DESIGN OF EXPERIMENT AND TAGUCHI METHOD APPLICATION IN ANALYSIS OF GEAR OIL PUMP FLOW CAPACITY

Ismar Alagić,
REZ-RDA Central BiH/University of Zenica, Faculty of Mechanical Engineering in Zenica,
Štrosmajerova 11/3. BA-7200 Zenica, Bosnia and Herzegovina,
E-mail: ismar@rez.ba, iyalagic@mf.unze.ba; alagicismar@yahoo.com

ABSTRACT

Application of experiment planning mathematical model in industrial conditions testing of gear oil pump at company “Pobjeda”, Tešanj is shown in this paper. This paper is supplement to experimental research of gear pump flow capacity. The experiment was conducted on a testing engine board specially designed for gear pump performances measuring. Optimizations of construction and exploitation factors are very important factor which influences on gear pumps quality and on functional utilization of these pumps. The investigation is realized under exactly established plan with using statistical methods of results treatment with application of regression analyse. The theory of experiment design through the models of the first and second order was applied here to obtain a functional relationship between following parameters: revolution speed, pressure, oil temperature and gear normal pressure angle on the one side and flow capacity on the other side. The application of this form gives enough precisely results in practice. This paper's goal is to show that application of design experiment is successful in solving these and similar problems. Also, the application of Taguchi method (L16 experimental plan) in industrial conditions determination of firm “Pobjeda”, Tešanj is shown in this article.

1. INTRODUCTION

Oil gear pumps belong in group of rotary pumps. The main characteristics of oil gear pumps are simplicity, compactness and long life over 5000 working hours. Necessity of exactness theoretical determination of gear pump flow capacity is limited with their wide operating range and also with constant increasing capacity. Theoretical calculation of flow capacity of gear pump with external toothing is very difficult because it include influence a lot of various factors. Also, we need detailed mathematical treatment to calculate volume of gear gap. Determination of flow capacity of gear pump with appropriate result analysis in the aim of establishing functional relation between revolution speed, pressure, oil temperature and gear normal pressure angle, is presented. The investigation was carried out on 61319 221 type of oil gear pump. This pump is a single stage pump with following original toothing characteristics:
Figure 1. Section of gear pump.

- Number of teeth \(z \) 8
- Normal module \(m_n \) 6.5
- Pitch diameter \(d_a \) 52
- Root diameter \(d_r \) 38.3 \(\pm \) 0.3
- Base diameter \(d_b \) 47.128
- Tip diameter \(d_e \) 66 h7
- Face width \(b \) 28 h8
- Normal pressure angle \(\alpha \) 25°
- Centre distance \(a \) 52.75 \(\pm \) 0.02
- Number of teeth of meshing gear \(z_1 \) 8

Also, in experiment we were used gear's with value of normal pressure angle: \(\alpha_{II} = 27° \) and \(\alpha_{III} = 29° \). Theoretical value of flow capacity of oil gear pump is given by equation as follows [1]:

\[
Q = \frac{2 \cdot z \cdot b \cdot A \cdot n}{\eta \cdot \cos \left(\frac{\beta}{\pi \cdot 180°} \right) \cdot 10^6} \quad \cdots (1)
\]

where is:
- \(z \) - Number of teeth;
- \(b \) - Face width, mm;
- \(A \) - Cross section of gear gap, \(\text{mm}^2 \);
- \(n \) - Revolution speed (rpm), \(\text{min}^{-1} \);
- \(\eta \) - Efficiency of pump (in this case \(\eta = 0.8 \));
- \(\beta \) - Helix angle (in this case \(\beta = 0 \)), °.
Experiment was performed on a testing engine board (see figure 3) specially designed for these pumps testing with small resistance.

![Experiment setup](image)

Figure 2. Oil gear pump 61319 221 type. Figure 3. Test engine board for testing gear pumps.

2. EXPERIMENTAL DESIGN

Within experimental investigation of relationship (1) there have been assumed dependences of flow capacity (Q) upon oil pressure (p), rpm (n), oil temperature (t) and gear normal pressure angle (α) in the form of regression polynomial of the first order:

$$Y = b_0x_0 + b_1x_1 + b_2x_2 + b_3x_3 + b_4x_4 + b_{12}x_1x_2 + b_{13}x_1x_3 + b_{14}x_1x_4 + b_{23}x_2x_3 + b_{24}x_2x_4 + b_{34}x_3x_4 + b_{123}x_1x_2x_3 + b_{134}x_1x_3x_4 + b_{234}x_2x_3x_4 + b_{1234}x_1x_2x_3x_4 \ldots (2)$$

where:

$b_0, b_1, \ldots, b_{1234}$ are parameters or coefficients of regression and x_1, x_2, x_3, x_4 are coded value of model.

In order to eliminate the influence of other factors upon the flow capacity, planned experiment is performed on oil gear pump of type 61319 221. Clearly, design (α) and exploitation (p, n, t) characteristics of gear pump will be varied experimentally by manufacturing sample gear pump 61319 221, and then the gear pump flow capacity will be examined. Testing the flow capacity will be performed on the test engine board, specially designed for these pumps performances measuring in the company “Pobjeda”, Tešanj, B&H.

Characteristics of test engine board are as follows: Flow indication, from 5.6 to 200 dm3 (maximum flow by section 400 dm3); Pressure indication, from 0 to 2.5 MPa; Vacuum indication, from -1 to 0 MPa; Maximum power of electric motor 70 kW; Maximum pressure loss by normal flow, to 0.1 MPa; Temperature indication, from 0 to 120 °C; Revolution speed (rpm) indication, from 100 to 4000 rpm; Force moment of variable speed hydraulic governor, 0.8 Nm; Volume of oil tank, 80 dm3.

Also, characteristics of working fluid, oil SUPER HD SL. (grade SAE 30, producer INA, Croatia), are: Specific weight, $\gamma=0.898$ kg/dm3; Viscosity by 50 °C, $\nu=65$ mm2/s; Viscosity index, IV=95; Flash point by Marcusson, 200 °C; Freezing point by ASTM, -20 °C /2].
Table 1. Levels of model factor in natural and coded values.

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>Lower level</th>
<th>Basic level</th>
<th>Upper level</th>
<th>Interval of variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>pressure (MPa)</td>
<td>$p, 10^3$</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>rpm</td>
<td>n, min^{-1}</td>
<td>1000</td>
<td>1750</td>
<td>2500</td>
</tr>
<tr>
<td>oil temperature</td>
<td>$t, ^\circ\text{C}$</td>
<td>80</td>
<td>84</td>
<td>88</td>
</tr>
<tr>
<td>normal pressure</td>
<td>α, °</td>
<td>25</td>
<td>27</td>
<td>29</td>
</tr>
</tbody>
</table>

In the Table 1, coded and natural values of model factor are shown, while in the same time equations of transformation are in the shape:

$$x_i = \frac{X_i - X_{oi}}{w_i} \quad \ldots \ (3)$$

where:
- x_i is coded value of model factor;
- X_i is natural value of model factor;
- X_{oi} is basic level of model factor, and
- w_i is interval of variation.

Table 2. Plan-matrix and results of investigation

<table>
<thead>
<tr>
<th>No</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>$x_1 \cdot x_2$</th>
<th>$x_1 \cdot x_3$</th>
<th>$x_1 \cdot x_4$</th>
<th>$x_2 \cdot x_3$</th>
<th>$x_2 \cdot x_4$</th>
<th>$x_3 \cdot x_4$</th>
<th>$x_1 \cdot x_2 \cdot x_3$</th>
<th>$x_1 \cdot x_2 \cdot x_4$</th>
<th>$x_1 \cdot x_3 \cdot x_4$</th>
<th>$x_2 \cdot x_3 \cdot x_4$</th>
<th>$x_1 \cdot x_2 \cdot x_3 \cdot x_4$</th>
<th>\hat{y}</th>
<th>\hat{y}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+1</td>
<td>131,5</td>
<td>132,33</td>
</tr>
<tr>
<td>2</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>133,8</td>
<td>134,92</td>
</tr>
<tr>
<td>3</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>47,6</td>
<td>48,72</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>54,7</td>
<td>54,53</td>
</tr>
<tr>
<td>5</td>
<td>+1</td>
<td>135,1</td>
<td>135,1</td>
</tr>
<tr>
<td>6</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>134,92</td>
<td>134,92</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>51,3</td>
<td>52,42</td>
</tr>
<tr>
<td>8</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>55,5</td>
<td>55,994</td>
</tr>
<tr>
<td>9</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>147,7</td>
<td>148,82</td>
</tr>
<tr>
<td>10</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>150,2</td>
<td>151,37</td>
</tr>
<tr>
<td>11</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>56,6</td>
<td>57,432</td>
</tr>
<tr>
<td>12</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>56,6</td>
<td>57,432</td>
</tr>
<tr>
<td>13</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>149,5</td>
<td>150,62</td>
</tr>
<tr>
<td>14</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>131,6</td>
<td>132,43</td>
</tr>
<tr>
<td>15</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>57,7</td>
<td>58,532</td>
</tr>
<tr>
<td>16</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>+1</td>
<td>62,3</td>
<td>63,42</td>
</tr>
<tr>
<td>17</td>
<td>+1</td>
<td>0</td>
<td>99,4</td>
<td>99,57</td>
</tr>
<tr>
<td>18</td>
<td>+1</td>
<td>0</td>
<td>102</td>
<td>99,57</td>
</tr>
<tr>
<td>19</td>
<td>+1</td>
<td>0</td>
<td>99,8</td>
<td>99,57</td>
</tr>
<tr>
<td>20</td>
<td>+1</td>
<td>0</td>
<td>98,6</td>
<td>99,57</td>
</tr>
<tr>
<td>21</td>
<td>+1</td>
<td>0</td>
<td>105,4</td>
<td>99,57</td>
</tr>
<tr>
<td>22</td>
<td>+1</td>
<td>0</td>
<td>103</td>
<td>99,57</td>
</tr>
<tr>
<td>23</td>
<td>+1</td>
<td>0</td>
<td>104,4</td>
<td>99,57</td>
</tr>
</tbody>
</table>

Multy-factor complete orthogonal first order plan $N=2^k + n_0$, with replication in central point n_0 times is used for function form $Q = f (p, n, t, \alpha)$. In our case (four factors),
number of replication of experiment in central point is \(n_0 = 7 \). Therefore, the number of experimental points is: \(N = 2^k + n_0 = 2^4 + 7 = 23 \). By regression analysis of data from the Table 2, regression model of first order in coded values has been obtained:

\[
\hat{Y} = 99.57 - 1.719x_1 + 42.969x_2 - 0.919x_3 - 5.894x_4 + 0.606x_1x_2 - 0.106x_1x_3 - 0.106x_1x_4 + 0.156x_2x_3 - 2.924x_2x_4 + 0.131x_3x_4 + 0.019x_1x_2x_3 - 0.169x_1x_3x_4 + 0.169x_2x_3x_4 + 0.181x_1x_2x_3x_4
\]

Using the transformation equations (3) and model (4) is transformed into model with experimental points is: \(N = 2 \)

\[
Q = \hat{Y} = 217.004 - 83.094
\]

or, applying transformation equation (3), in natural values:

\[
\begin{align*}
\hat{t} = 100.11, & t_1 = 5.34, \quad t_2 = 0.921 \\
\hat{t} = 100.11, & t_1 = 5.34, \quad t_2 = 0.921
\end{align*}
\]

By disperse analysis of model (4) it has been shown that following parameters of the model \(b_0, b_1, b_2, b_5 \) and \(b_{24} \) (\(b_0 = 99.57, b_1 = -1.72, b_2 = 42.97, b_5 = -5.89, b_{24} = -2.29 \)) are significant, because numerical values of Student t-test (\(t_{20} = 333.46, \ t_{20} = 4.01, \ t_{20} = 100.11, \ t_{12} = 2.14, \ t_{12} = 13.73, \ t_{12} = 5.34 \)) greater than table value or critical value \(t = 2.447 \) for \(\alpha = 0.05 \) and \(v = 6 \) degrees of freedom. Checking of model (4) adequacy has showed that model is adequate, because numerical value of Fishers test \(F_t = 4.00 \) for the \(\alpha = 0.05 \) and \(v_1 = 12 \) and \(v_2 = 6 \) degrees of freedom.

Accordingly, final first order polynomial for proper describing dependence of flow capacity of examined oil gear pump upon significant factors of model is:

\[
\hat{Y} = 99.57 - 1.719x_1 + 42.969x_2 - 5.894x_4 - 2.924x_2x_4
\]

or, applying transformation equation (3), in natural values:

\[
Q = 214.004 - 83.094 p + 0.021 n - 7.067 \alpha + 0.001 n \alpha
\]

3. ANALYSIS OF THE EXPERIMENTAL RESULTS

- Flow capacity phenomena can be adequately presented by application of experiment design;
- Significance analysis of model (6) was shown that factors as follows: \(x_1 \) (pressure), \(x_2 \) (rpm) and \(x_3 \) (normal pressure angle) are significant. Also, this analysis was shown that only factor \(x_3 \) (oil temperature) are not significant and doesn't have any significantly influence to flow capacity value in this case;
- Adequacy analysis was was that model (6) correctly describe researched process, and coefficient of correlation has a very high value \(R = 0.99 \);
- Comparation between theoretical and model value of flow capacity are presented on figure 4. From this figure, you can see that the main influence on flow capacity has rpm value;
- Optimization of dependence between flow capacity on the one hand, and rpm, pressure, and normal pressure angle on the other hand, is presented on the figure’s 5 and 6;
- The importance of this experiment is in the fact that it shows how on the fast and
simple way, with the use of the methods of the experimental design, the
expressions which describe more complex processes can be obtained with the
sufficient precision.

![Grafical interpretation of flow capacity dependence of gear oil pump 61319 221 type](image)

Figure 4. Grafical interpretation of flow capacity dependence of gear oil pump 61319 221 type.

![Data: FLOW.STA 17v * 30c](image)

Figure 5. Influence optimization of rpm and normal pressure angle (α) on flow capacity.

![Data: FLOW.STA 17v * 30c](image)

Figure 6. Influence optimization of rpm and pressure on flow capacity.

4. APPLICATION OF TAGUCHI METHOD

The Taguchi method is based on statistical design of experiments and is applied at the
parameter design stage to establish optimum process settings or design parameters.
The basic concept of the Taguchi Method through application example in order to
determine flow capacity of gear oil pump is presented in this article. This article is
supplement to experimental research of gear pump flow capacity. Combination of
working pressure, revolution per speed, working oil temperature, normal pressure angle
as design characteristic of gear pump and type of oil has essential influence on
achievement of flow capacity as output characteristic of gear oil pump. All above five
factors were used for the experiment.
The experiment was carried out using a standard Taguchi's experimental plan with denotation L16 (2^{15}). The S/N calculations are based on larger the better S/N ratio. The experiment was conducted on a testing board specially designed for gear pump performances measuring. Application of Taguchi method in industrial conditions determination of flow capacity of gear oil pump in company “Pobjeda”, Tešanj is shown in this article. Obtained test results are of practical importance, especially in the field of gear pumps design.

The experimental plan has two levels. There are 13 degrees of freedom regarding the number of levels of control factors and number of desired interactions between control factors. The experiment was performed according to Taguchi experimental plan with designation L$_{16}$ (2^{15}). An orthogonal array with arranged control factors and their interaction to columns is presented in table 2. Where designations 1 and 2 mean 1st and 2nd level of each control level. According to that we have made 16 experimental runs at control factors' level like it is determined by the orthogonal array.

Table 3. The levels of the factors.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Designation</th>
<th>1st level</th>
<th>2nd level</th>
<th>Degrees of freedom</th>
</tr>
</thead>
<tbody>
<tr>
<td>pressure, p [10$^{-1}$ MPa]</td>
<td>A</td>
<td>2</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>rpm, n [min$^{-1}$]</td>
<td>B</td>
<td>1000</td>
<td>2500</td>
<td>1</td>
</tr>
<tr>
<td>oil temperature, t [˚C]</td>
<td>C</td>
<td>80</td>
<td>88</td>
<td>1</td>
</tr>
<tr>
<td>normal pressure angle, α [°]</td>
<td>D</td>
<td>25</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>oil type (producer of oil)</td>
<td>E</td>
<td>INA Castrol</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

The Larger-the-Better approach of Taguchi method has been used for analysis of experimental results. The Signal-to-Noise (S/N) ratio is calculated according to the equation:

$$\eta = S / N = -10\log_{10}(\sum_{i=1}^{n} y_i^2) \quad \ldots \ (8)$$

Each measurement of flow capacity has been repeated three times, as can be seen from table 3.

Table 4. Plan of an experiment and results based on L15 experimental plan.

<table>
<thead>
<tr>
<th>No</th>
<th>C</th>
<th>E</th>
<th>CxE</th>
<th>B</th>
<th>CxB</th>
<th>BxE</th>
<th>AxD</th>
<th>A</th>
<th>AxC</th>
<th>AxE</th>
<th>BxD</th>
<th>A x B</th>
<th>DxE</th>
<th>CxD</th>
<th>D</th>
<th>Measured flow capacity, Q [dm3]</th>
<th>S/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>62.4</td>
<td>62.4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>51.3</td>
<td>43.7</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>135.2</td>
<td>135.2</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>149.6</td>
<td>149.6</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>55.4</td>
<td>55.6</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>57.7</td>
<td>57.8</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>151.6</td>
<td>151.6</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>133.2</td>
<td>133.2</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>53.7</td>
<td>53.6</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>56.4</td>
<td>56.6</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>150.3</td>
<td>150.3</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>131.7</td>
<td>131.5</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>60.4</td>
<td>60.4</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>47.5</td>
<td>47.5</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>133.6</td>
<td>133.7</td>
</tr>
<tr>
<td>16</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>147.8</td>
<td>147.8</td>
</tr>
</tbody>
</table>
Control factors and their interactions are sorted in relation to the difference values. The all control factors and their interactions are shown in table 4. We can see that the strongest influence is exerted by control factors B (rpm), D (normal pressure angle) and interaction AxB. All other control factors and interactions have a weak influence on the S/N ratio of the considered flow capacity.

Figure 7 Signal-to-Noise Ratio response graphs for significant control parameters and their interactions.

Table 5. Signal-to-Noise ratio response table.

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>E</th>
<th>CxE</th>
<th>B</th>
<th>CxB</th>
<th>BxE</th>
<th>AxD</th>
<th>A</th>
<th>AxC</th>
<th>AxE</th>
<th>BxD</th>
<th>AxB</th>
<th>DxE</th>
<th>Cd</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>388,778</td>
<td>388,113</td>
<td>387,618</td>
<td>355,356</td>
<td>388,388</td>
<td>388,096</td>
<td>387,612</td>
<td>389,638</td>
<td>387,719</td>
<td>387,652</td>
<td>388,147</td>
<td>389,110</td>
<td>387,770</td>
<td>387,629</td>
<td>92,179</td>
</tr>
<tr>
<td>L2</td>
<td>386,975</td>
<td>387,640</td>
<td>388,136</td>
<td>420,398</td>
<td>387,365</td>
<td>387,658</td>
<td>388,142</td>
<td>386,115</td>
<td>388,034</td>
<td>388,102</td>
<td>387,606</td>
<td>386,643</td>
<td>387,983</td>
<td>388,124</td>
<td>83,574</td>
</tr>
<tr>
<td>Delta</td>
<td>1,803</td>
<td>0,473</td>
<td>0,518</td>
<td>65,042</td>
<td>1,023</td>
<td>0,438</td>
<td>0,530</td>
<td>3,523</td>
<td>0,315</td>
<td>0,450</td>
<td>0,541</td>
<td>2,467</td>
<td>0,213</td>
<td>0,495</td>
<td>8,605</td>
</tr>
</tbody>
</table>

According to the table 5, we can determine which control factors and their interactions have a very strong influence on the flow capacity of the oil gear pump. Optimal input working conditions of these control factors can be very easily determined from S/N response graphs in figure 7. The best flow capacity value is at the higher S/N values in the mentioned response graphs. Expected value of S/N ratio was calculated by following expression:

\[
\eta = \frac{\bar{Q} + (\bar{B} - \bar{Q}) + (\bar{D} - \bar{Q}) + (\bar{A}B - \bar{Q}) - (\bar{A}Q - \bar{Q}) - (\bar{B}D - \bar{Q})}{(A - B)(B - C)(C - D)}
\]

\[
\eta = \frac{Q}{A B D - A B C + B C D} = 55,18
\]

The \(\eta \) value derived from expression (9) was used to calculate flow capacity \(Q \) according to expression:
The calculated flow capacity is $579,8 \text{ dm}^3/h$, this value is very close to the value calculated by expression (1) $Q=583,15 \text{ dm}^3/h$. The analysis of variance ANOVA of S/N ratios is shown in figure 8.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Factor & Interaction & DF & SS & MS & F & p-Value
\hline
C & oil temperature & 1 & 86 & 86 & 0.003 & -1.6875 \ (p = 0.003)
\hline
E & oil temperature x oil temperature & 1 & 2 & 2 & 0.004 & 0.304167 \ (p = 0.004)
\hline
B & rpm x oil temperature & 1 & 177452 & 177452 & 0.004 & 0.304167 \ (p = 0.004)
\hline
CB & rpm x oil temperature x oil temperature & 1 & 2 & 2 & 0.004 & 0.304167 \ (p = 0.004)
\hline
AD & pressure x normal pressure angle & 1 & 503 & 503 & 0.004 & 0.304167 \ (p = 0.004)
\hline
AB & pressure x rpm x oil temperature & 1 & 40 & 40 & 0.004 & 0.304167 \ (p = 0.004)
\hline
DE & normal pressure angle x oil type & 1 & 0 & 0 & 0.004 & 0.304167 \ (p = 0.004)
\hline
CD & oil temperature x normal pressure angle & 1 & 2 & 2 & 0.004 & 0.304167 \ (p = 0.004)
\hline
D & normal pressure angle x oil type & 1 & 3363 & 3363 & 0.004 & 0.304167 \ (p = 0.004)
\hline
\hline
Error & & & 32 & 9067.2 & & -0.001
\hline
Total & & & 47 & 9067.2 & & -0.001
\hline
\end{tabular}
\end{table}

5. CONCLUSION

Based on presented experimental research and results analysis, following can be concluded:

- Systematically, by applying theory of experimental design, dependence of oil gear pump flow capacity value upon the revolution speed, pressure, oil temperature and gear normal pressure angle, has been investigated;

- Experimental investigation has been performed on a testing engine board specially designed for these pumps performances measuring in industrial conditions at company “Pobjeda”, Tesanj, Bosnia and Herzegovina;

- For the purpose of reliable predicting the flow capacity value of mentioned oil gear pump can be used experimentally obtained polynomial dependence of the first order:

\[
Q = \hat{y} = 217,004 - 83,094 \cdot p + 0,21 \cdot n - 7,067 \cdot \alpha + 0,001 \cdot n \cdot \alpha
\]

- Theoretical value of flow capacity of oil gear pump is given by one of following equations \[3, \[4, \[5, \[6, \[7, \[8, \[9, \[10\] :\]

\[
Q_t = 2\pi b n m^2 (z+1) 10^{-6}
\] \text{...(12)}
\begin{align*}
Q_t &= 2\pi bn m^2 (z+2k_1+0.276)10^{-6} \quad \cdots(13) \\
Q_t &= 6.5bnm^2 z10^{-6} \quad \cdots(14) \\
Q_t &= 7bnmdm10^{-6} \quad \cdots(15) \\
Q_t &= \pi bna(d_k-a)10^{-6} \quad \cdots(16) \\
Q_t &= (\pi/4) bn(d_k^2-d_f^2)10^{-6} \quad \cdots(17) \\
Q_t &= 0.785 bn(d_k^2-d_f^2)10^{-6} \quad \cdots(18) \\
Q_t &= \pi bndh10^{-6} \quad \cdots(19) \\
Q_t &= 0.875 bn(d_k^2-d_f^2)10^{-6} \quad \cdots(20) \\
Q_t &= (31.4/60)bn(d_k^2-d_f^2)10^{-6} \quad \cdots(21) \\
Q_t &= (47/60)bn(d_k^2-d_f^2)(1/cos\beta_0)10^{-6} \quad \cdots(22) \\
Q_t &= (\pi/2)bn(d_k^2-a^2-(d_k^2\pi/3z^2))10^{-6} \quad \cdots(23) \\
Q_t &= 2Abnz10^{-6} \quad \cdots(24) \\
Q_t &= 2A_mbnz10^{-6} \quad \cdots(25) \\
Q_t &= 2\pi bn[r_2^2-r_0^2-k(t_0/12)]10^{-6} \quad \cdots(26) \\
Q_t &= 2\pi bnm^2[z+1-(\pi^2cos^2\alpha)/12]10^{-6} \quad \cdots(27) \\
Q_t &= 2\pi bnm^2[z+1-(l_f/12)]10^{-6} \quad \cdots(28) \\
Q_t &= 2\pi bnm^2[r_2^2-r_f^2-m^2cos^2\alpha]10^{-6} \quad \cdots(29)
\end{align*}

Deviation limits between mentioned equations and obtained equation of the first order are as follows: -4% and +7%.

- Based on performed experiment, can be concluded most influence factors on flow capacity of gear oil pump are as follows:
 - design of gear, housing of pump and cover of pump;
 - radial and axial clearance;
 - type and temperature of fluid and
 - gear tooth profile.

- The experiment has been performed on oil gear pump of type 61319 221, and because of that, stated conclusions can not be applied for the other types of these pumps, but the same methodology of design experiment can be used for other types of these pumps.

- In this article, the way of optimisation of input working characteristics in order to determine of flow capacity of oil gear pump, using the Larger-the-Better Taguchi method approach, is shown. Using the Taguchi method, the flow capacity of gear oil pump was optimised. An L16 orthogonal array was used to accommodate the experiments. Analysis of the result of experiment obtained information regarding the most influencing factors on flow capacity. The results revealed that the rpm, the normal pressure angle, and the interaction between rpm and pressure could significantly affect the flow capacity. By consideration of technical effects, the optimal levels were chosen to be A1, B2, C1, D1 and E1, corresponding to pressure of 0.2 MPa, rpm of 2500 min\(^{-1}\), oil temperature of 80°C, normal pressure angle of 25° and oil type of INA producer.

Finally, it can be concluded that according to the experimental results, Taguchi method approach used for determination of flow capacity of oil gear pump, makes possible to
obtain good quality of pump output characteristic, which is very close to the value calculated by theoretical expression (1). Finally, it can be concluded that according to the experimental results, Taguchi method approach used for determination of flow capacity of oil gear pump, makes possible to obtain good quality of pump output characteristic, which is very close to the value calculated by theoretical expression (1).

6. REFERENCES

